Jump to main content
Jump to site search

Issue 38, 2017
Previous Article Next Article

Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction

Author affiliations

Abstract

Three-dimensional (3D) electrode architectures for conformal deposition and effective use of catalysts are an emerging area with significant interest in electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffolds with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate a monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between the ALD of Pt and the 3D network of LSG provides an avenue for minimal yet effective usage of Pt leading to an enhanced HER activity. This strategy establishes a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

Graphical abstract: Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Jul 2017, accepted on 31 Aug 2017 and first published on 01 Sep 2017


Article type: Paper
DOI: 10.1039/C7TA06236B
Citation: J. Mater. Chem. A, 2017,5, 20422-20427
  •   Request permissions

    Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction

    P. Nayak, Q. Jiang, N. Kurra, X. Wang, U. Buttner and H. N. Alshareef, J. Mater. Chem. A, 2017, 5, 20422
    DOI: 10.1039/C7TA06236B

Search articles by author

Spotlight

Advertisements