Issue 35, 2017

A series of high-energy coordination polymers with 3,6-bis(4-nitroamino-1,2,5-oxadiazol-3-yl)-1,4,2,5-dioxadiazine, a ligand with multi-coordination sites, high oxygen content and detonation performance: syntheses, structures, and performance

Abstract

In this study, 3,6-bis(4-nitroamino-1,2,5-oxadiazol-3-yl)-1,4,2,5-dioxadiazine (H2BNOD), with a relatively high oxygen content (37.41%) and good detonation performance (density = 1.817 g cm−3, detonation velocity = 8490 m s−1), is used to prepare three new high-energy coordination polymers (CPs), {Ag2(BNOD)(DMF)2}n (1), {Ag2(BNOD)}n (1a), and {Cu(BNOD)(H2O)6}n (2), and a metal salt, Co(BNOD)(H2O)6 (3). Crystal structure analyses indicated that 1 is a 2D energetic coordination polymer (E-CP) with a three-dimensional wavy layer structure; 1a is a compact 3D E-CP without any solvent molecules. 2 exhibits a zigzag 1D chain structure, while the ionic salt 3 has a layer-by-layer structure (0D). Thermal analysis indicated that 1 and 1a exhibit good, as well as similar, thermostability (200 °C) owing to their compact framework structures. The enthalpy of formation is calculated from the constant-volume combustion energy. The four compounds exhibit detonation velocities (D) ranging from 7141 to 10 084 m s−1, detonation pressures (P) ranging from 25.10 to 58.04 GPa, and heat of detonation (Q) values from 1.11 to 1.91 kcal g−1. The impact sensitivities of the energetic salts were between 5 and 12 J, and their friction sensitivities ranged from 120 to 180 N, at the same level as those of RDX and HMX. Among these four compounds, 1a exhibits outstanding performance (D = 10 084 m s−1, P = 58.04 GPa and Q = 1.91 kcal g−1) with a compact 3D CP structure.

Graphical abstract: A series of high-energy coordination polymers with 3,6-bis(4-nitroamino-1,2,5-oxadiazol-3-yl)-1,4,2,5-dioxadiazine, a ligand with multi-coordination sites, high oxygen content and detonation performance: syntheses, structures, and performance

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2017
Accepted
09 Aug 2017
First published
09 Aug 2017

J. Mater. Chem. A, 2017,5, 18854-18861

A series of high-energy coordination polymers with 3,6-bis(4-nitroamino-1,2,5-oxadiazol-3-yl)-1,4,2,5-dioxadiazine, a ligand with multi-coordination sites, high oxygen content and detonation performance: syntheses, structures, and performance

C. Shen, Y. Xu and M. Lu, J. Mater. Chem. A, 2017, 5, 18854 DOI: 10.1039/C7TA05479C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements