Jump to main content
Jump to site search

Issue 24, 2017
Previous Article Next Article

Lithium metal protected by atomic layer deposition metal oxide for high performance anodes

Author affiliations

Abstract

Lithium metal is a highly desirable anode material for lithium batteries due to its extremely high theoretical capacity (3860 mA h g−1), low potential (−3.04 V versus standard hydrogen electrode), and low density (0.534 g cm−3). However, dendrite growth during cycling and low coulombic efficiency, resulting in safety hazards and fast battery fading, are huge barriers to commercialization. Herein, we used atomic layer deposition (ALD) to prepare conformal, ultrathin aluminum oxide coatings on lithium. We investigated the growth mechanism during Al2O3 ALD on lithium by in situ quartz crystal microbalance and found larger growth than expected during the initial cycles. We also discovered that the ALD Al2O3 enhances the wettability of the Li surface towards both carbonate and ether electrolytes, leading to uniform and dense SEI formation and reduced electrolyte consumption during battery operation. Scanning electron microscopy verified that the bare Li surfaces become rough and dendritic after electrochemical cycling, whereas the ALD Al2O3 coated Li surfaces remain smooth and uniform. Analysis of the Li surfaces after cycling using X-ray photoelectron spectroscopy and in situ transmission electron microscopy revealed that the ALD Al2O3 coating remains intact during electrochemical cycling, and that Li ions diffuse through the coating and deposit on the underlying Li. Coin cell testing demonstrated more than two times longer cycling life for the ALD Al2O3 protected Li, and a coulombic efficiency as high as ∼98% at a practical current rate of 1 mA cm−2. More significantly, when the electrolyte volume was reduced from 20 to 5 μL, the stabilizing effect of the ALD coating became even more pronounced and the cycling life was around four times longer. These results indicate that ALD Al2O3 coatings are a promising strategy to stabilize Li anodes for high performance energy storage devices such as Li–S batteries.

Graphical abstract: Lithium metal protected by atomic layer deposition metal oxide for high performance anodes

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Apr 2017, accepted on 21 May 2017 and first published on 26 May 2017


Article type: Paper
DOI: 10.1039/C7TA03116E
Citation: J. Mater. Chem. A, 2017,5, 12297-12309
  •   Request permissions

    Lithium metal protected by atomic layer deposition metal oxide for high performance anodes

    L. Chen, J. G. Connell, A. Nie, Z. Huang, K. R. Zavadil, K. C. Klavetter, Y. Yuan, S. Sharifi-Asl, R. Shahbazian-Yassar, J. A. Libera, A. U. Mane and J. W. Elam, J. Mater. Chem. A, 2017, 5, 12297
    DOI: 10.1039/C7TA03116E

Search articles by author

Spotlight

Advertisements