Jump to main content
Jump to site search

Issue 27, 2017
Previous Article Next Article

Rational synthesis of Na and S co-catalyst TiO2-based nanofibers: presence of surface-layered TiS3 shell grains and sulfur-induced defects for efficient visible-light driven photocatalysis

Author affiliations

Abstract

Surface-modified TiO2 nanofibers (NFs) with tunable visible-light photoactive catalysts were synthesised through electrospinning, followed by a sulfidation process. The utilization of sodium-based sulfidation precursors effectively led to the diffusion and integration of sulfur impurities into TiO2, modifying its band function. The optical band function of the sulfur-modified TiO2 NFs can be easily manipulated from 3.17 eV to 2.28 eV through surface modification, due to the creation of oxygen vacancies through the sulfidation process. Sulfidating TiO2 NFs introduces Ti–S-based nanograins and oxygen vacancies on the surface that favor the TiO2–TiS3 core–shell interface. These defect states extend the photocatalytic activity of the TiO2 NFs under visible irradiation and improve effective carrier separation and the production of reactive oxygen species. The surface oxygen vacancies and the Ti–S-based surface nanograins serve as charge traps and act as adsorption sites, improving the carrier mobility and avoiding charge recombination. The diffused S-modified TiO2 NFs exhibit a degradation rate of 0.0365 cm−1 for RhB dye solution, which is 4.8 times higher than that of pristine TiO2 NFs under visible irradiation. By benefiting from the sulfur states and oxygen vacancies, with a narrowed band gap of 2.3 eV, these nanofibers serve as suitable localized states for effective carrier separation.

Graphical abstract: Rational synthesis of Na and S co-catalyst TiO2-based nanofibers: presence of surface-layered TiS3 shell grains and sulfur-induced defects for efficient visible-light driven photocatalysis

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Apr 2017, accepted on 11 Jun 2017 and first published on 12 Jun 2017


Article type: Paper
DOI: 10.1039/C7TA02839C
Citation: J. Mater. Chem. A, 2017,5, 14206-14219
  •   Request permissions

    Rational synthesis of Na and S co-catalyst TiO2-based nanofibers: presence of surface-layered TiS3 shell grains and sulfur-induced defects for efficient visible-light driven photocatalysis

    K. S. Ranjith and T. Uyar, J. Mater. Chem. A, 2017, 5, 14206
    DOI: 10.1039/C7TA02839C

Search articles by author

Spotlight

Advertisements