Issue 25, 2017

Morphology controlled synthesis of MnCO3–RGO materials and their supercapacitor applications

Abstract

MnCO3-reduced graphene oxide (MnCO3–RGO) was grown on nickel foam by a facile successive ionic layer adsorption and reaction (SILAR) method and used as a supercapacitor electrode. The morphology of the MnCO3 functionalities was tuned from lotus to flake to spherical shape using different chelating agents during synthesis. The length and width of the individual petals of the lotus structure MnCO3 were found to be ∼200–300 and 50–100 nm, respectively. The reduction of graphene oxide (GO) in MnCO3–RGO composites was confirmed by Raman spectroscopy and electrical conductivity data analysis. The lotus shaped MnCO3 grown on RGO sheets provided a high surface area and electrical conductivity as compared to the developed electrode materials. The cyclic voltammetry, galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy analyses showed that the lotus shaped MnCO3 grown on RGO sheets provided higher current response, large specific capacitance (SC) and low solution, charge-transfer and Warburg resistance as compared to the flake and spherically shaped MnCO3 grown on RGO sheets. A fabricated asymmetric supercapacitor (ASC) device with MnCO3 (lotus) – RGO as the positive electrode and sonochemically reduced GO as the negative electrode – exhibited a working potential of ∼0–1.6 V, SC of ∼ 335 F g−1 at ∼2 A g−1 (∼468 mF cm−2 at ∼2.8 mA cm−2), an energy density of ∼120 W h kg−1 (∼0.16 mW h cm−2) and a power density of ∼16 kW kg−1 (∼22 mW cm−2) with a GCD stability of ∼73% after 10 000 cycles.

Graphical abstract: Morphology controlled synthesis of MnCO3–RGO materials and their supercapacitor applications

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2017
Accepted
12 May 2017
First published
12 May 2017

J. Mater. Chem. A, 2017,5, 12863-12872

Morphology controlled synthesis of MnCO3–RGO materials and their supercapacitor applications

M. Jana, P. Samanta, N. Chandra Murmu and T. Kuila, J. Mater. Chem. A, 2017, 5, 12863 DOI: 10.1039/C7TA02652H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements