Jump to main content
Jump to site search

Issue 24, 2017
Previous Article Next Article

A hexanuclear cobalt metal–organic framework for efficient CO2 reduction under visible light

Author affiliations

Abstract

Increasing global challenges including climate warming and energy shortage have stimulated worldwide explorations for efficient materials for applications in the capture of CO2 and its conversion to chemicals. In this study, a novel pillared-layer porous metal–organic framework (Co6–MOF) with high nuclearity CoII clusters has been synthesized. This material exhibited a CO2 adsorption capacity of up to 55.24 cm3 g−1 and 38.17 cm3 g−1 at 273 K and 298 K, respectively. In a heterogeneous photocatalytic system of CO2 reduction, this material, co-operated with a ruthenium-based photosensitizer, can efficiently realize CO2 to CO conversion. Under visible-light irradiation for 3 hours, 39.36 μmol CO and 28.13 μmol H2 were obtained. This result is higher than those of most of the reported MOF materials under similar conditions and to the best of our knowledge, this is the first example of a high nuclear MOF used in CO2 reduction. The rooted reasons behind the high reactivity were studied through theoretical calculation studies. The results showed that electrons on reduced [Ru(bpy)3]Cl2·6H2O (bpy = 4,4′-bipyridine) could transfer to the Co6–MOF and the adsorbed CO2 molecule on the charged Co6–MOF could be activated more facilely. This work not only clarifies the reasons for high efficiency of the CO2 photoreduction system but also points out to us the direction for designing more effective MOF materials as photocatalysts for artificial CO2 photoreduction.

Graphical abstract: A hexanuclear cobalt metal–organic framework for efficient CO2 reduction under visible light

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Mar 2017, accepted on 13 May 2017 and first published on 15 May 2017


Article type: Paper
DOI: 10.1039/C7TA02611K
Citation: J. Mater. Chem. A, 2017,5, 12498-12505
  • Open access: Creative Commons BY license
  •   Request permissions

    A hexanuclear cobalt metal–organic framework for efficient CO2 reduction under visible light

    J. Zhao, Q. Wang, C. Sun, T. Zheng, L. Yan, M. Li, K. Shao, X. Wang and Z. Su, J. Mater. Chem. A, 2017, 5, 12498
    DOI: 10.1039/C7TA02611K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements