Jump to main content
Jump to site search


In situ formation of a 3D core/shell structured Ni3N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions

Author affiliations

Abstract

It is of great importance but still remains a key challenge to develop non-noble-metal bifunctional catalysts for efficient full water splitting under mild pH conditions. In this communication, we report the in situ electrochemical development of an ultrathin Ni–Bi layer on a metallic Ni3N nanosheet array supported on a Ti mesh (Ni3N@Ni–Bi NS/Ti) as a durable 3D core/shell structured nanoarray electrocatalyst for water oxidation at near-neutral pH. The Ni3N@Ni–Bi NS/Ti demands overpotentials of 405 and 382 mV to deliver a geometrical catalytic current density of 10 mA cm−2 in 0.1 and 0.5 M K–Bi (pH: 9.2), respectively, superior in activity to Ni3N NS/Ti and most reported non-precious metal catalysts under benign conditions. It also performs efficiently for the hydrogen evolution reaction requiring an overpotential of 265 mV for 10 mA cm−2 and its two-electrode electrolyser affords 10 mA cm−2 at a cell voltage of 1.95 V in 0.5 M K–Bi at 25 °C.

Graphical abstract: In situ formation of a 3D core/shell structured Ni3N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 16 Mar 2017, accepted on 09 Apr 2017 and first published on 10 Apr 2017


Article type: Communication
DOI: 10.1039/C7TA02333B
Citation: J. Mater. Chem. A, 2017, Advance Article
  •   Request permissions

    In situ formation of a 3D core/shell structured Ni3N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions

    L. Xie, F. Qu, Z. Liu, X. Ren, S. Hao, R. Ge, G. Du, A. M. Asiri, X. Sun and L. Chen, J. Mater. Chem. A, 2017, Advance Article , DOI: 10.1039/C7TA02333B

Search articles by author