Jump to main content
Jump to site search


Tuning electrochemical catalytic activity of defective 2D terrace MoSe2 heterogeneous catalyst via Co doping

Abstract

This study presents successful growth of defective 2D terrace MoSe2/CoMoSe lateral heterostructures (LH), bilayer and multilayer MoSe2/CoMoSe LH, and vertical heterostructures (VH) nanolayers by doping metal Co (cobalt) element into MoSe2 atomic layers to form a CoMoSe alloy at the high temperature (~900 °C). After the successful introduction of metal Co heterogeneity in the MoSe2 thin layers, more active sites can be created to enhance hydrogen evolution reaction (HER) activities combining with metal Co catalysis, through the mechanisms including (1) atomic arrangement distortion in CoMoSe alloy nanolayers, (2) atomic level coarsening in LH interfaces and terrace edge layer architecture in VH, (3) formation of defective 2D terrace MoSe2 nanolayers heterogeneous catalyst via metal Co doping. The HER investigations indicated that the obtained products with LH and VH exhibited an improved HER activity in comparison with those from the pristine 2D MoSe2 electrocatalyst and LH type MoSe2/CoMoSe. The present work shows a facile yet reliable route to introduce metal ions into ultrathin 2D transition metal dichalcogenides (TMDCS) and produce defective 2D alloy atomic layers for exposing active sites, and thus eventually improve their electrocatalytic performance.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 16 Mar 2017, accepted on 12 May 2017 and first published on 12 May 2017


Article type: Paper
DOI: 10.1039/C7TA02327H
Citation: J. Mater. Chem. A, 2017, Accepted Manuscript
  •   Request permissions

    Tuning electrochemical catalytic activity of defective 2D terrace MoSe2 heterogeneous catalyst via Co doping

    X. Chen, Y. Qiu, G. Liu, W. zheng, W. Feng, F. Gao, W. Cao, Y. Q. Fu, W. Hu and P. Hu, J. Mater. Chem. A, 2017, Accepted Manuscript , DOI: 10.1039/C7TA02327H

Search articles by author