Jump to main content
Jump to site search


One-electron intermediates of water oxidation & the role of solvation in their stability

Author affiliations

Abstract

The initial step of the electrochemically controlled water oxidation reaction on transition metal oxide surfaces localizes positive charge onto surface atoms, creating one-electron intermediates. For decades, the stability of this critical reaction intermediate has been used to predict catalytic activity, by a Sabatier analysis of the first bond (O–O) the intermediates catalyse within the O2 evolution cycle. Recently, several groups directly detected these intermediates by their specific vibrations during the reaction on different material surfaces (Co3O4, Fe2O3, SrTiO3). By observing surface bound one-electron intermediates, these experiments validate a Sabatier analysis. However, the experiments strongly suggest that solvation by the electrolyte is important to their stability, which has not been a focus of calculations of their charge trapping capacity. For the time-resolved (femtosecond) experiments of the SrTiO3 surface, solvation by water rate limits the intermediates' formation time constant. Further, the kinetic stability or lifetime of the intermediates across diverse material surfaces points to the importance of re-organization within the electrolyte. In this highlight, we review these recent results, put them in the context of theoretical investigations, and discuss the implications of solvation-enabled intermediate stability for probing and understanding catalytic mechanism at surfaces.

Graphical abstract: One-electron intermediates of water oxidation & the role of solvation in their stability

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 13 Mar 2017, accepted on 25 Apr 2017 and first published on 26 Apr 2017


Article type: Highlight
DOI: 10.1039/C7TA02240A
Citation: J. Mater. Chem. A, 2017, Advance Article
  •   Request permissions

    One-electron intermediates of water oxidation & the role of solvation in their stability

    X. Chen, D. Aschaffenburg and T. Cuk, J. Mater. Chem. A, 2017, Advance Article , DOI: 10.1039/C7TA02240A

Search articles by author