Issue 19, 2017

Systematic evaluation of structure–property relationships in heteroacene – diketopyrrolopyrrole molecular donors for organic solar cells

Abstract

Improved understanding of fundamental structure–property relationships, particularly the effects of molecular shape and intermolecular packing on film morphology and active layer charge transport characteristics, enables more rational synthesis of new p-type small molecules. Here we investigate a series of small molecules consisting of an acene-based electron-rich core flanked by one or two electron-deficient diketopyrrolopyrrole (DPP) moieties. Through minor changes in the molecule structures, measurable variations in the crystal structure and sizable differences in macroscopic properties are achieved. The molecular symmetry as well as the conformation of the side chains affects the unit cell packing density and strength of the intermolecular electronic coupling in single crystals of all molecules in this series. The addition of a second DPP unit to the benzodithiophene (BDT) core increases molecular planarity leading to decreased reorganization energy, strong cofacial coupling, and moderate hole mobility (2.7 × 10−4 cm2 V−1 s−1). Increasing the length of the acene core from benzodithiophene to naphthodithiophene (NDT) results in a further reduction in reorganization energy and formation of smaller crystalline domains (∼11 nm) when mixed with PCBM. Decreasing the aspect ratio of the core using a “zig-zag” naphthodithiophene (zNDT) isomer results in the highest hole mobility of 1.3 × 10−3 cm2 V−1 s−1 due in part to tight lamellar (d = 13.5 Å) and π–π stacking (d = 3.9 Å). The hole mobility is directly correlated with the short-circuit current (11.7 mA cm−2) and solar cell efficiency (4.4%) of the highest performing zNDT:PCBM device. For each of these small molecules the calculated π-coupling constant is correlated with the hole mobility as a function of crystal structure and orientation indicating the importance of designing molecules that create extended crystalline networks with maximal π-orbital overlap.

Graphical abstract: Systematic evaluation of structure–property relationships in heteroacene – diketopyrrolopyrrole molecular donors for organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
06 Mar 2017
Accepted
18 Apr 2017
First published
19 Apr 2017

J. Mater. Chem. A, 2017,5, 9217-9232

Systematic evaluation of structure–property relationships in heteroacene – diketopyrrolopyrrole molecular donors for organic solar cells

S. Loser, S. J. Lou, B. M. Savoie, C. J. Bruns, A. Timalsina, M. J. Leonardi, J. Smith, T. Harschneck, R. Turrisi, N. Zhou, C. L. Stern, A. A. Sarjeant, A. Facchetti, R. P. H. Chang, S. I. Stupp, M. A. Ratner, L. X. Chen and T. J. Marks, J. Mater. Chem. A, 2017, 5, 9217 DOI: 10.1039/C7TA02037F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements