Jump to main content
Jump to site search


Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as highly active and durable electrocatalysts for oxygen reduction and ethanol oxidation

Abstract

The development of high performance non-platinum electrocatalysts is highly desirable for the commercialization of fuel cells. Herein, we present a facile and effective strategy for the synthesis of ultrafine PdCo bimetallic nanoparticles (NPs, diameter ≈ 4.1 nm) encapsulated in N-doped porous carbon nanocapsules (PdCo@NPNCs) by one-pot PdCl42- and Co2+-mediated polymerization of dopamine on SiO2 nanospheres, followed by carbonization and chemical etching. The N-doped porous carbon shell that is in situ formed from dopamine coating could effectively prevent the coalescence of NPs during the carbonization process. Also the carbon shell protects the NPs from detachment and agglomeration as well as dissolution during the fuel cell operation. Benefiting from the synergistic effect from the unique structures and chemical compositions, the optimized PdCo@NPNCs exhibit better electrocatalytic activity and enhanced durability for oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) in alkaline solution than those of the commercial Pt/C (20 wt%) and Pd/C (10 wt%) catalysts, even the content of PdCo is as low as 3.68 wt%. Furthermore, the synthetic method described here can be generalized to other bimetallic NPs confined in NPNCs that can be used in a broad range of catalysis, environmental protection, drug delivery, chemical and biological sensing, and so forth.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 21 Jan 2017, accepted on 11 Mar 2017, published on 13 Mar 2017 and first published online on 13 Mar 2017


Article type: Paper
DOI: 10.1039/C7TA00710H
Citation: J. Mater. Chem. A, 2017, Accepted Manuscript
  •   Request permissions

    Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as highly active and durable electrocatalysts for oxygen reduction and ethanol oxidation

    Z. Zhang, S. Liu, X. Tian, J. Wang, P. Xu, F. Xiao and S. Wang, J. Mater. Chem. A, 2017, Accepted Manuscript , DOI: 10.1039/C7TA00710H

Search articles by author