Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



Systematic variation of the optical bandgap in titanium based isoreticular metal–organic frameworks for photocatalytic reduction of CO2 under blue light

Author affiliations

Abstract

A series of metal–organic frameworks isoreticular to MIL-125-NH2 were prepared, where the 2-amino-terephthalate organic links feature N-alkyl groups of increasing chain length (from methyl to heptyl) and varying connectivity (primary and secondary). The prepared materials display reduced optical bandgaps correlated with the inductive donor ability of the alkyl substituent as well as high photocatalytic activity towards the reduction of carbon dioxide under blue illumination operating over 120 h. Secondary N-alkyl substitution (isopropyl, cyclopentyl and cyclohexyl) exhibits larger apparent quantum yields than the primary N-alkyl analogs directly related to their longer lived excited-state lifetime. In particular, MIL-125-NHCyp (Cyp = cyclopentyl) exhibits a small bandgap (Eg = 2.30 eV), a long-lived excited-state (τ = 68.8 ns) and a larger apparent quantum yield (Φapp = 1.80%) compared to the parent MIL-125-NH2 (Eg = 2.56 eV, Φapp = 0.31%, τ = 12.8 ns), making it a promising candidate for the next generation of photocatalysts for solar fuel production based on earth-abundant elements.

Graphical abstract: Systematic variation of the optical bandgap in titanium based isoreticular metal–organic frameworks for photocatalytic reduction of CO2 under blue light

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 13 Jan 2017, accepted on 07 Apr 2017 and first published on 07 Apr 2017


Article type: Paper
DOI: 10.1039/C7TA00437K
Citation: J. Mater. Chem. A, 2017, Advance Article
  •   Request permissions

    Systematic variation of the optical bandgap in titanium based isoreticular metal–organic frameworks for photocatalytic reduction of CO2 under blue light

    M. W. Logan, S. Ayad, J. D. Adamson, T. Dilbeck, K. Hanson and F. J. Uribe-Romo, J. Mater. Chem. A, 2017, Advance Article , DOI: 10.1039/C7TA00437K

Search articles by author