Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



Tuning CH3NH3Pb(I1−xBrx)3 perovskite oxygen stability in thin films and solar cells

Author affiliations

Abstract

The rapid development of organic–inorganic lead halide perovskites has resulted in high efficiency photovoltaic devices. However the susceptibility of these devices to degradation under environmental stress has so far hindered commercial development, requiring for example expensive device encapsulation. Herein, we have investigated the stability of CH3NH3Pb(I1−xBrx)3 [x = 0–1] thin films and solar cells under controlled humidity, light, and oxygen conditions. We show that higher bromide ratios increase tolerance to moisture, with x = 1 thin films being stable to 120 h of moisture stress. Under light and dry air, partial bromide (x < 1) substitution does not enhance film stability significantly, with the corresponding solar cells degrading within two hours. In contrast, CH3NH3PbBr3 films show excellent stability, with device stability being limited by the organic interlayer. For these x = 1 films, we show that charge carriers are quenched in the presence of oxygen and form superoxide; however in contrast to perovskites containing iodide, this superoxide does not degrade the crystal. Our observations show that iodide limits the oxygen and light stability of CH3NH3Pb(I1−xBrx)3 perovskites, but that CH3NH3PbBr3 provides an opportunity to develop inherently stable high voltage photovoltaic devices and 4-terminal tandem solar cells.

Graphical abstract: Tuning CH3NH3Pb(I1−xBrx)3 perovskite oxygen stability in thin films and solar cells

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 03 Jan 2017, accepted on 17 Mar 2017 and first published on 17 Mar 2017


Article type: Paper
DOI: 10.1039/C7TA00058H
Citation: J. Mater. Chem. A, 2017, Advance Article
  •   Request permissions

    Tuning CH3NH3Pb(I1−xBrx)3 perovskite oxygen stability in thin films and solar cells

    S. Pont, D. Bryant, C. Lin, N. Aristidou, S. Wheeler, X. Ma, R. Godin, S. A. Haque and J. R. Durrant, J. Mater. Chem. A, 2017, Advance Article , DOI: 10.1039/C7TA00058H

Search articles by author