Jump to main content
Jump to site search

Issue 18, 2017
Previous Article Next Article

2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing

Author affiliations

Abstract

Transition metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2), have been studied intensively in recent years due to wide range of potential applications. TMD gas sensors have been developed and intensively explored for their promising applications. In recent times, it has been reported that edge sites of TMDs can contribute to highly enhanced gas adsorption properties. Herein, superior room temperature gas sensing properties of WS2 edge functionalized carbon nanofibers (CNFs) with multiple tubular pores (WS2@MTCNFs) have been demonstrated. A copolymer-electrospinning route, which uses poly(styrene-acrylonitrile) as sacrificial templates and WS2 precursor containing poly(acrylonitrile) as carbon matrix, offered facile synthesis of CNFs having high gas permeability with single-layered WS2 edge-rich surface. As a result, WS2@MTCNFs based sensors exhibited notable gas response (15% at 1 ppm of NO2) at room temperature compared to pristine CNFs (2% at 1 ppm of NO2), which can be attributed to the synergistic effects that originated from enhanced surface area and open porosity with numerous elongated pore channels of MTCNFs as well as remarkably increased active spots on the surface from WS2 edge sites.

Graphical abstract: 2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 Dec 2016, accepted on 05 Apr 2017 and first published on 05 Apr 2017


Article type: Paper
DOI: 10.1039/C6TA11019C
Citation: J. Mater. Chem. A, 2017,5, 8725-8732
  •   Request permissions

    2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing

    J. Cha, S. Choi, S. Yu and I. Kim, J. Mater. Chem. A, 2017, 5, 8725
    DOI: 10.1039/C6TA11019C

Search articles by author

Spotlight

Advertisements