Jump to main content
Jump to site search


Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid

Author affiliations

Abstract

A comprehensive study was carried out on platinum nanoparticle decorated CeO2 nanoboxes as an efficient catalyst towards electro-oxidation of formic acid. We herein report the effect of different parameters such as the size and shape of CeO2 nanoboxes, thickness of the CeO2 shell, mode of attachment of Pt nanoparticles on the CeO2 surface and screening of Pt loading on the electro-oxidation of formic acid. A facile low temperature aqueous phase method was utilized for the synthesis of CeO2 nanoboxes using Cu2O nanocubes as a soft sacrificial template. Owing to the exposed active surface area and optimum shell thickness, the smallest CeO2 boxes loaded with Pt (50 nm) showed excellent activity for formic acid oxidation with a current density of 4.52 mA cm−2. The highly porous hollow nanoboxes act as a bifunctional support for Pt nanoparticles. The catalyst also exhibited significant activity in the oxidation of other small molecules such as ethanol and methanol.

Graphical abstract: Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 26 Jul 2016, accepted on 18 Oct 2016 and first published on 18 Oct 2016


Article type: Communication
DOI: 10.1039/C6TA06339J
Citation: J. Mater. Chem. A, 2017, Advance Article
  •   Request permissions

    Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid

    S. Ramani, S. Sarkar, V. Vemuri and S. C. Peter, J. Mater. Chem. A, 2017, Advance Article , DOI: 10.1039/C6TA06339J

Search articles by author