Issue 44, 2017

Exploring the potential of ionic bipolar diodes for chemical neural interfaces

Abstract

Technology interfaces which can imitate the chemically specific signaling of nervous tissues are attractive for studying and developing therapies for neurological disorders. As the signaling in nervous tissue is highly spatiotemporal in nature, an interfacing technology should provide local neurotransmitter release in the millisecond range. To obtain such a speed, the neurotransmitters must be stored close to the release point, while avoiding substantial passive leakage. Here we theoretically investigate whether ionic bipolar diodes can be used for this purpose. We find that if a sufficiently large reverse potential is applied, the passive leakage can be suppressed to negligible levels due to the high local electric field within the bipolar diode. The influences of various design parameters are studied to determine the optimal design and operation. Finally, the delivery speed of the component is evaluated using time-dependent simulations, which show that the release of neurotransmitters to physiologically relevant concentrations can be achieved in less than 10 ms. Altogether, the results suggest that ionic bipolar diodes constitute a highly attractive technology for achieving high speed low leakage addressable delivery circuits for neural interfaces.

Graphical abstract: Exploring the potential of ionic bipolar diodes for chemical neural interfaces

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2017
Accepted
22 Oct 2017
First published
23 Oct 2017

Soft Matter, 2017,13, 8171-8177

Exploring the potential of ionic bipolar diodes for chemical neural interfaces

K. Tybrandt, Soft Matter, 2017, 13, 8171 DOI: 10.1039/C7SM01732D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements