Issue 16, 2017

Substrate effects on cell-envelope deformation during early-stage Staphylococcus aureus biofilm formation

Abstract

Bacterial adhesion to a surface is the first step in biofilm formation, and adhesive forces between the surface and a bacterium are believed to give rise to planktonic-to-biofilm phenotypic changes. Here we use Focused-Ion-Beam (FIB) tomography with backscattered scanning electron microscopy (SEM) to image Staphyolococcus aureus (S. aureus) biofilms grown on Au-coated polystyrene (PS) and Au-coated PS modified by mixed thiols of triethylene glycol mono-11-mercaptoundecyl ether (EG3) and 1-dodecanethiol (CH3). The FIB-SEM technique enables a direct measurement of the contact area between individual bacteria and the substrate. The area of adhesion is effectively zero on the EG3 substrate. It is nonzero on all of the other substrates and increases with increasing hydrophobicity. The fact that the contact area is highest on the unmodified gold, however, indicates that other forces beyond hydrophobicity are significant. The magnitude of bacterial deformation suggests that the adhesive forces are on the order of a few nN, consistent with AFM force measurements reported in the literature. The resolution afforded by electron microscopy furthermore enables us to probe changes in the cell-envelope thickness, which decreases within and near the contact area relative to other parts of the same bacterium. This finding supports the idea that mechanosensing due to stress-induced membrane thinning plays a role in the planktonic-to-biofilm transition associated with bacterial adhesion.

Graphical abstract: Substrate effects on cell-envelope deformation during early-stage Staphylococcus aureus biofilm formation

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2016
Accepted
21 Mar 2017
First published
21 Mar 2017

Soft Matter, 2017,13, 2967-2976

Substrate effects on cell-envelope deformation during early-stage Staphylococcus aureus biofilm formation

J. Gu, A. Valdevit, T. Chou and M. Libera, Soft Matter, 2017, 13, 2967 DOI: 10.1039/C6SM02815B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements