Issue 4, 2017

Electrokinetic flows in liquid crystal thin films with fixed anchoring

Abstract

We study ionic and mass transport in a liquid crystalline fluid film in its nematic phase under an applied electrostatic field. Both analytic and numerical solutions are given for some prototypical configurations of interest in electrokinetics: thin films with spatially nonuniform nematic director that are either periodic or comprise a set of isolated disclinations. We present a quantitative description of the mechanisms inducing spatial charge separation in the nematic, and of the structure and magnitude of the resulting flows. The fundamental solutions for the charge distribution and flow velocities induced by disclinations of topological charge m = −1/2, 1/2 and 1 are given. These solutions allow the analysis of several designer flows, such as “pusher” flows created by three colinear disclinations, the flow induced by an immersed spherical particle (equivalent to an m = 1 defect) and its accompanying m = −1 hyperbolic hedgehog defect, and the mechanism behind nonlinear ionic mobilities when the imposed field is perpendicular to the line joining the defects.

Graphical abstract: Electrokinetic flows in liquid crystal thin films with fixed anchoring

Article information

Article type
Paper
Submitted
21 Oct 2016
Accepted
03 Dec 2016
First published
05 Dec 2016

Soft Matter, 2017,13, 725-739

Electrokinetic flows in liquid crystal thin films with fixed anchoring

C. Conklin and J. Viñals, Soft Matter, 2017, 13, 725 DOI: 10.1039/C6SM02393B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements