Jump to main content
Jump to site search

Issue 4, 2018
Previous Article Next Article

Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes

Author affiliations

Abstract

Emerging lead halide perovskite materials have enormous potential for application in a range of optoelectronic devices, such as solar cells, light emitting diodes, transistors and lasers. However, the large-scale commercialization of these technologies will depend on the ability of the active material to be stable under environmental and operating conditions. In this work, we measured for the first time the electrical bias-induced degradation of inverted perovskite solar cells in the dark in different environments and concluded that humidity coupled with electrical bias results in fast degradation of CH3NH3PbI3 into PbI2. Micro-Raman and photoluminescence show that the degradation starts from the edge of the cell due to moisture ingress. By using novel local Raman-transient photocurrent measurements, we were able to probe local ion migration in the degraded region and non-degraded region and found that the formation of PbI2 can passivate the perovskite by reducing ion migration. The degradation is far from uniform across different grains as revealed by secondary electron hyperspectral imaging, an advanced scanning electron microscopy technique which allows probing the composition of individual grains from the cross section. By using potential step chronoamperometry, we also found that the bias degradation is closely related to the density of mobile ions. The unique combination of established methods with several novel analytical tools provides an insight into the origin of the bias-degradation of inverted perovskite solar cells from the nano-scale to the cell level, and demonstrates the potential of these novel tools for studying the degradation in other perovskite systems.

Graphical abstract: Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Nov 2017, accepted on 09 Feb 2018 and first published on 12 Feb 2018


Article type: Paper
DOI: 10.1039/C7SE00545H
Citation: Sustainable Energy Fuels, 2018,2, 905-914
  •   Request permissions

    Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes

    J. Barbé, V. Kumar, M. J. Newman, H. K. H. Lee, S. M. Jain, H. Chen, C. Charbonneau, C. Rodenburg and W. C. Tsoi, Sustainable Energy Fuels, 2018, 2, 905
    DOI: 10.1039/C7SE00545H

Search articles by author

Spotlight

Advertisements