Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2017
Previous Article Next Article

Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells

Author affiliations

Abstract

In situ degradation of multiple dyes (D35, N719, SQ1 and SQ2) has been investigated simultaneously using digital imaging and colour analysis. The approach has been used to study the air stability of N719 and squaraine dyes adsorbed onto TiO2 films with the data suggesting this method could be used as a rapid screening technique for DSC dyes and other solar cell components. Full DSC devices have then been tested using either D35 or N719 dyes and these data have been correlated with UV-vis, IR and XPS spectroscopy, mass spectrometry, TLC and DSC device performance. Using this method, up to 21 samples have been tested simultaneously ensuring consistent sample exposure. Liquid electrolyte DSC devices have been tested under light soaking including the first report of D35 testing with I/I3 electrolyte whilst operating at open circuit, short circuit, or under load, with the slowest degradation shown at open circuit. D35 lifetime data suggest that this dye degrades after ca. 370 h light soaking regardless of UV filtering. Control, N719 devices have also been light soaked for 2500 h to verify the imaging method and the N719 device data confirm that UV filtration is essential to protect the dye and I3/I electrolyte redox couple to maintain device lifetime. The data show a direct link between the colour intensity and/or hue of device sub-components and device degradation, enabling “real time” diagnosis of device failure mechanisms.

Graphical abstract: Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 10 Jan 2017, accepted on 13 Jan 2017 and first published on 16 Jan 2017


Article type: Paper
DOI: 10.1039/C7SE00015D
Citation: Sustainable Energy Fuels, 2017,1, 362-370
  • Open access: Creative Commons BY license
  •   Request permissions

    Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells

    L. Furnell, P. J. Holliman, A. Connell, E. W. Jones, R. Hobbs, C. P. Kershaw, R. Anthony, J. Searle, T. Watson and J. McGettrick, Sustainable Energy Fuels, 2017, 1, 362
    DOI: 10.1039/C7SE00015D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author