Jump to main content
Jump to site search

Issue 11, 2017
Previous Article Next Article

Size and charge effect of guest cations in the formation of polyoxopalladates: a theoretical and experimental study

Author affiliations

Abstract

The development of rational synthetic procedures with desired nuclearity and high selectivity is a critical issue in inorganic chemistry. Here we demonstrate a comprehensive understanding of the template effect induced by metal cations in the formation mechanism of the class of polyoxopalladates ({MPd12L8} nanocube and {MPd15L10} nanostar) by combining computational and experimental techniques. The capture of a Mn+ guest ion by a peripheral palladium(II)-oxo shell leads to a competition between the parent Pd2+ addenda ion and the respective guest metal ion. The present study reveals that (i) the selection of the incorporated guest ion has a thermodynamic control, (ii) the main factors governing the formation of a particular polyanion are the charge and size of the guest cation, (iii) the electrostatic interaction between the cation and the surrounding oxo ligands and (iv) the dehydration ability of the cation. As expected from the number of observed {Mn+Pd12L8} species, trivalent cations M3+ were found to be good templates resulting in several examples of {M3+Pd12L8}, whereas monovalent cations M+ are much less prone to form {M+Pd12L8}. For tetravalent cations the dehydration energies are very large, however, the formation of {M4+Pd12L8} nanocubes is found to be still energetic favourable. Fully consistent with computational predictions, four novel polyoxo-12-palladates were synthesized: the La3+-centered nanocube [LaPd12O8(PhAsO3)8]5− (LaPd12-closed), the La3+-centered “open” nanocube [LaPd12O6(OH)3(PhAsO3)6(OAc)3]3− (LaPd12-open), the Ga3+-centered [GaPd12O8(PhAsO3)8]5− (GaPd12), and the In3+-analogue [InPd12O8(PhAsO3)8]5− (InPd12). All four compounds were fully characterized in the solid state and in solution by a multitude of physicochemical techniques, including 71Ga and 115In NMR as well as mass spectrometry. The experimentally observed selective incorporation of only In3+ ions in the presence of Ga3+ and In3+ confirmed the thermodynamic control of the formation mechanism, which we had predicted by theory.

Graphical abstract: Size and charge effect of guest cations in the formation of polyoxopalladates: a theoretical and experimental study

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Aug 2017, accepted on 22 Sep 2017 and first published on 25 Sep 2017


Article type: Edge Article
DOI: 10.1039/C7SC03441E
Citation: Chem. Sci., 2017,8, 7862-7872
  • Open access: Creative Commons BY license
  •   Request permissions

    Size and charge effect of guest cations in the formation of polyoxopalladates: a theoretical and experimental study

    Z. Lang, P. Yang, Z. Lin, L. Yan, M. Li, J. J. Carbó, U. Kortz and J. M. Poblet, Chem. Sci., 2017, 8, 7862
    DOI: 10.1039/C7SC03441E

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements