Jump to main content
Jump to site search

Issue 10, 2017
Previous Article Next Article

Uncaging carbon disulfide. Delivery platforms for potential pharmacological applications: a mechanistic approach

Author affiliations

Abstract

We describe the kinetics of the formation and decay of a series of dithiocarbamates under physiological conditions. The goal is to provide a toolbox of compounds that release CS2 by well-defined kinetics in such media. Carbon disulfide is a known environmental toxin, but there is fragmentary evidence suggesting that CS2 may have bioregulatory and/or therapeutic roles in mammalian biology. Further investigation of such roles will require methodologies for controlled delivery of this bioactive small molecule to specific targets. Reported here are mechanistic and computational studies of CS2 release from a series of dithiocarbamate anions (DTCs), where R2N represents several different secondary amido groups. The various DTCs under physiologically relevant conditions show a tremendous range of reactivities toward CS2 dissociation with decay lifetimes ranging from ∼2 s for imidazolidyldithiocarbamate (ImDTC) to ∼300 s for diisopropyldithiocarbamate (DIDTC) to >24 h for pyrrolidinyldithiocarbamate (PDTC) in pH 7.4 phosphate buffer solution at 37 °C. Thus, by making the correct choice of these tools, one can adjust the flux of CS2 in a biological experiment, while the least reactive DTCs could serve as controls for evaluating the potential effects of the dithiocarbamate functionality itself. Kinetics studies and density functional calculations are used to probe the mechanism of DTC decay. In each case, the rate of CS2 dissociation is acid dependent; however, the DFT studies point to a mechanistic pathway for ImDTC that is different than those for DIDTC. The role of general acid catalysis is also briefly probed.

Graphical abstract: Uncaging carbon disulfide. Delivery platforms for potential pharmacological applications: a mechanistic approach

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Jun 2017, accepted on 03 Sep 2017 and first published on 04 Sep 2017


Article type: Edge Article
DOI: 10.1039/C7SC02727C
Citation: Chem. Sci., 2017,8, 7186-7196
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Uncaging carbon disulfide. Delivery platforms for potential pharmacological applications: a mechanistic approach

    A. W. DeMartino, M. L. Souza and P. C. Ford, Chem. Sci., 2017, 8, 7186
    DOI: 10.1039/C7SC02727C

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements