Jump to main content
Jump to site search

Issue 8, 2017
Previous Article Next Article

Heterospin biradicals provide insight into molecular conductance and rectification

Author affiliations

Abstract

The correlation of electron transfer with molecular conductance (g: electron transport through single molecules) by Nitzan and others has contributed to a fundamental understanding of single-molecule electronic materials. When an unsymmetric, dipolar molecule spans two electrodes, the possibility exists for different conductance values at equal, but opposite electrode biases. In the device configuration, these molecules serve as rectifiers of the current and the efficiency of the device is given by the rectification ratio (RR = gforward/greverse). Experimental determination of the RR is challenging since the orientation of the rectifying molecule with respect to the electrodes and with respect to the electrode bias direction is difficult to establish. Thus, while two different values of g can be measured and a RR calculated, one cannot easily assign each conductance value as being aligned with or opposed to the molecular dipole, and calculations are often required to resolve the uncertainty. Herein, we describe the properties of two isomeric, triplet ground state biradical molecules that serve as constant-bias analogs of single-molecule electronic devices. Through established theoretical relationships between g and electronic coupling, H2, and between H2 and magnetic exchange coupling, J (gH2J), we use the ratio of experimental J-values for our two isomers to calculate a RR for an unsymmetric bridge molecule with known geometry relative to the two radical fragments of the molecule and at a spectroscopically-defined potential bias. Our experimental results are compared with device transport calculations.

Graphical abstract: Heterospin biradicals provide insight into molecular conductance and rectification

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Jan 2017, accepted on 12 May 2017 and first published on 01 Jun 2017


Article type: Edge Article
DOI: 10.1039/C7SC00073A
Citation: Chem. Sci., 2017,8, 5408-5415
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Heterospin biradicals provide insight into molecular conductance and rectification

    M. L. Kirk, D. A. Shultz, J. Zhang, R. Dangi, L. Ingersol, J. Yang, N. S. Finney, R. D. Sommer and L. Wojtas, Chem. Sci., 2017, 8, 5408
    DOI: 10.1039/C7SC00073A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements