Jump to main content
Jump to site search

Issue 4, 2017
Previous Article Next Article

Tuning the polarity of charge carriers using electron deficient thiophenes

Author affiliations

Abstract

Thiophene-1,1-dioxide (TDO) oligomers have fascinating electronic properties. We previously used thermopower measurements to show that a change in charge carrier from hole to electron occurs with increasing length of TDO oligomers when single-molecule junctions are formed between gold electrodes. In this article, we show for the first time that the dominant conducting orbitals for thiophene/TDO oligomers of fixed length can be tuned by altering the strength of the electron acceptors incorporated into the backbone. We use the scanning tunneling microscope break-junction (STM-BJ) technique and apply a recently developed method to determine the dominant transport channel in single-molecule junctions formed with these systems. Through these measurements, we find that increasing the electron affinity of thiophene derivatives, within a family of pentamers, changes the polarity of the charge carriers systematically from holes to electrons, with some systems even showing mid-gap transport characteristics.

Graphical abstract: Tuning the polarity of charge carriers using electron deficient thiophenes

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Dec 2016, accepted on 16 Feb 2017 and first published on 28 Feb 2017


Article type: Edge Article
DOI: 10.1039/C6SC05283E
Citation: Chem. Sci., 2017,8, 3254-3259
  • Open access: Creative Commons BY license
  •   Request permissions

    Tuning the polarity of charge carriers using electron deficient thiophenes

    J. Z. Low, B. Capozzi, J. Cui, S. Wei, L. Venkataraman and L. M. Campos, Chem. Sci., 2017, 8, 3254
    DOI: 10.1039/C6SC05283E

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements