Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries

Author affiliations

Abstract

A flexible binder-free film composed of bismuth oxide nanoparticles embedded in carbon nanofibers (Bi2O3/C) was prepared by a feasible electrospinning method and directly used as a sodium ion battery (SIB) anode. As a binder-free and flexible anode for SIBs, Bi2O3/C delivers a high reversible capacity of 430 mA h g−1 after 200 cycles at a current density of 100 mA g−1 and an exceptional rate capability of 230 mA h g−1 at 3200 mA g−1. It has a stable capacity of 252 mA h g−1 after 50 cycles at 400 mA g−1 in a Na-ion full cell device. The high capacity, good cyclability and rate capability are attributed to synergistic effects of the uniform distribution of ultra-small Bi2O3 nanoparticles (≈10 nm) in the carbon nanofibers and the conducting framework of 3-D interconnected carbon nanofibers, which can effectively alleviate the volume expansion during sodiation/desodiation processes and maintain the high electrical conductivity throughout the electrode. This self-standing flexible Bi2O3/C nanocomposite electrode may hold great promise for high-performance SIBs.

Graphical abstract: Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 19 Mar 2017, accepted on 11 Apr 2017 and first published on 12 Apr 2017


Article type: Research Article
DOI: 10.1039/C7QM00128B
Citation: Mater. Chem. Front., 2017, Advance Article
  •   Request permissions

    Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries

    H. Yin, M. Cao, X. Yu, H. Zhao, Y. Shen, C. Li and M. Zhu, Mater. Chem. Front., 2017, Advance Article , DOI: 10.1039/C7QM00128B

Search articles by author