Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 4, 2017
Previous Article Next Article

Li1.17Mn0.50Ni0.16Co0.17O2 assembled microspheres as a high-rate and long-life cathode of Li-ion batteries

Author affiliations

Abstract

Assembled microspherical cathodes have attracted great attention thanks to their high tap density, good rate capability and cycling stability. However, for layered Li-rich transition-metal oxides (LROs), the preparation of uniformly assembled microspheres still faces many challenges due to harsh synthetic conditions and the nature of multiple metal elements. In this work, Li1.17Mn0.50Ni0.16Co0.17O2 assembled microspheres have been prepared by a new route tactfully combining a solvothermal process and a molten-salt method. The use of a solvothermal process is helpful for the preparation of precursors with assembled microspherical morphology, and the addition of complex salts (NaCl and KCl), can increase the uniformity of cation distribution. The product obtained at 800 °C delivers the best electrochemical performances among all samples. At a current density of 300 mA g−1, its initial discharge capacity is larger than 228 mA h g−1, corresponding to a capacity retention ratio of 86.8% after 200 cycles. Even if the current density increases to 2000 mA g−1, its discharge capacity is still as large as 156 mA h g−1. What's more, we discover the moving rate of Li-ions during the sintering process will affect the uniformity of Li2MnO3-like and LiMO2 components in LRO assembled microspheres. This discovery is helpful for the preparation of LRO assembled microspheres with excellent electrochemical performances.

Graphical abstract: Li1.17Mn0.50Ni0.16Co0.17O2 assembled microspheres as a high-rate and long-life cathode of Li-ion batteries

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 12 Dec 2016, accepted on 17 Jan 2017 and first published on 18 Jan 2017


Article type: Research Article
DOI: 10.1039/C6QI00571C
Citation: Inorg. Chem. Front., 2017,4, 650-658
  •   Request permissions

    Li1.17Mn0.50Ni0.16Co0.17O2 assembled microspheres as a high-rate and long-life cathode of Li-ion batteries

    D. Luo, P. Shi, S. Fang, W. Guo, L. Yang and S. Hirano, Inorg. Chem. Front., 2017, 4, 650
    DOI: 10.1039/C6QI00571C

Search articles by author