Issue 47, 2017

Recyclable and efficient polyurethane-Ir catalysts for direct borylation of aromatic compounds

Abstract

Four polyurethanes comprising 2,2′-bipyridyl moieties incorporated in the main chain were synthesized as a novel polymer ligand for the Ir(I)-catalyzed direct borylation of aromatic compounds. The polyurethanes were insoluble in common organic solvents and soluble in dimethylsulfoxide. The borylation reaction of benzene catalyzed by Ir(I) in the presence of the polymer prepared from 4,4′-bis(hydroxylmethyl)-2,2′-bipyridyl and 1,6-diisocyanatohexane led to the catalytic activities comparable to that in the presence of 2,2′-bipyridyl, while the polymers prepared by the reactions of 4,4′-bis(hydroxylmethyl)-2,2′-bipyridyl with 1,4-diisocyanatobenzene, 1,4-diisocyanato-3-methylbenzene, and bis(4-isocyanatophenyl)methane possesed lower catalytic activities. The high activity observed using the 1,6-diisocyanatohexane-based polyurethane catalyst could have a connection to the fact that this polymer has the highest tendency to form the inter-chain hydrogen bond. The borylation reaction systems with the polymers were biphasic, where the top and bottom layers contained the product and the polymer-based catalysts, respectively. Due to the phase separation, the product isolation and catalyst recycle were readily performed through a simple decantation. The catalyst prepared from 1,6-diisocyanatohexane-based polyurethane was able to be recycled at least five times without a significant decrease in activity. Further, the regio-selectivity in borylation of toluene, anisole, and trifluoromethybenzene was studied using the polyurethane ligands as well as the corresponding small-molecular ligands.

Graphical abstract: Recyclable and efficient polyurethane-Ir catalysts for direct borylation of aromatic compounds

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2017
Accepted
08 Nov 2017
First published
09 Nov 2017

Polym. Chem., 2017,8, 7406-7415

Recyclable and efficient polyurethane-Ir catalysts for direct borylation of aromatic compounds

A. Kimura, H. Hayama, J. Hasegawa, H. Nageh, Y. Wang, N. Naga, M. Nishida and T. Nakano, Polym. Chem., 2017, 8, 7406 DOI: 10.1039/C7PY01509G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements