Issue 37, 2017

N-Heterocyclic olefins as initiators for the polymerization of (meth)acrylic monomers: a combined experimental and theoretical approach

Abstract

The zwitterionic organopolymerization of four different acrylic monomers (N,N-dimethylacrylamide, methyl acrylate, methyl methacrylate and tert-butyl methacrylate) based on neutral initiators, so-called N-heterocyclic olefins (NHOs), is presented. The scope and underlying (deactivation-)mechanisms were studied in a combined experimental and computational effort. From a range of differently structured NHOs it was shown that imidazole-derivatives, in contrast to imidazoline- and benzimidazole-derivatives, readily polymerize the selected monomers. While the additive-free reactions proceed with a relatively low degree of control to yield a largely atactic material, for the acrylamide the addition of LiCl as a μ-type ligand has been shown to result in a rapid and quantitative monomer consumption. The thus generated poly(N,N-dimethyl acrylamide) was found to be highly isotactic (>90% isotactic dyads) with high molecular weight (Mn = 250 000–650 000 g mol−1, ĐM = 1.3–1.6). Complementing DFT calculations considered the zwitterionic chain growth with respect to competing side reactions, namely spirocycles and enamine formation. It was found that NHOs with an unsaturated backbone better support the zwitterionic chain growth, with the spirocycles acting as dormant species that slow down but do not quench the polymerization process. Contrasting this, enamine formation irreversibly terminates the polymerization and is found to be energetically favored. This pathway can be blocked by the introduction of substituents on the exocyclic carbon of the NHO, resulting in structures like 2-isopropylidene-1,3,4,5-tetramethylimidazoline (4) which consequently deliver the most controlled polymerizations. Finally, a good correlation of the initiation energy barrier with the buried volume (%VBur) and the Parr electrophilicity index is described, allowing for a quick and reliable screening of potential monomers based on these two readily accessible parameters.

Graphical abstract: N-Heterocyclic olefins as initiators for the polymerization of (meth)acrylic monomers: a combined experimental and theoretical approach

Supplementary files

Article information

Article type
Paper
Submitted
22 Jul 2017
Accepted
25 Aug 2017
First published
25 Aug 2017

Polym. Chem., 2017,8, 5803-5812

N-Heterocyclic olefins as initiators for the polymerization of (meth)acrylic monomers: a combined experimental and theoretical approach

S. Naumann, K. Mundsinger, L. Cavallo and L. Falivene, Polym. Chem., 2017, 8, 5803 DOI: 10.1039/C7PY01226H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements