Jump to main content
Jump to site search


The hydrolytic behavior of N,N′-(dimethylamino)ethyl acrylate-functionalized polymeric stars

Author affiliations

Abstract

Well-defined N,N′-(dimethylamino)ethyl acrylate (DMAEA) functionalized polymeric stars have been synthesized via an arm-first approach. Utilizing reversible addition–fragmentation chain transfer polymerization, linear homopolymers (PEGA, PHEA) were chain extended with DMAEA and a divinyl crosslinker to produce a series of crosslinked polymeric stars. These stars were characterized using a range of techniques including NMR, SEC, DLS and TEM analysis. The hydrolytic behavior of the DMAEA when tethered within a micellar core was investigated by 1H NMR spectroscopy and was found to be strongly dependent on temperature. At elevated temperatures either a higher crosslinking density or a longer arm length was found to offer greater protection to the amine resulting in slower hydrolysis, with hydrolysis found to level off at a lower final percentage hydrolysis. In contrast, the composition and nature of the arm was found to have little impact on the hydrolysis, with the same trends relating to the effect of temperature and crosslinking density observed with a linear (HEA) and a brush (PEGA) arm. Additionally, the release of DMAE from the polymeric stars was successfully confirmed through the use of an enzymatic assay, producing a concentration of DMAE in good agreement with the theoretical concentration based on the 1H NMR spectroscopic analysis.

Graphical abstract: The hydrolytic behavior of N,N′-(dimethylamino)ethyl acrylate-functionalized polymeric stars

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Feb 2017, accepted on 16 Mar 2017 and first published on 17 Mar 2017


Article type: Paper
DOI: 10.1039/C7PY00219J
Citation: Polym. Chem., 2017, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    The hydrolytic behavior of N,N′-(dimethylamino)ethyl acrylate-functionalized polymeric stars

    M. S. Rolph, A. Pitto-Barry and R. K. O'Reilly, Polym. Chem., 2017, Advance Article , DOI: 10.1039/C7PY00219J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements