Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 15, 2017
Previous Article Next Article

Synthesis and side-chain isomeric effect of 4,9-/5,10-dialkylated-β-angular-shaped naphthodithiophenes-based donor–acceptor copolymers for polymer solar cells and field-effect transistors

Author affiliations

Abstract

A systematic methodology is developed to construct the angular-shaped β-form naphthodithiophene (β-aNDT) core with regiospecific substitution of two alkyl groups at its 4,9- or 5,10-positions via the base-induced double 6π-cyclization of dithienyldieneyne precursors, leading to the two isomeric 4,9-β-aNDT and 5,10-β-aNDT monomers. It is found that a more curved geometry of the β-aNDT units intrinsically increases the solubility and thus the solution-processability of the resultant polymers. Therefore, β-aNDT units are ideal for polymerization with an acceptor-containing monomer without the need for any solubilizing aliphatic side chains, which are considered the insulating portion that jeopardizes charge transport. Based on this consideration, the 4,9- and 5,10-dialkylated β-aNDT monomers are polymerized with the non-alkylated DTFBT acceptor to afford two P4,9-βNDTDTFBT and P5,10-βNDTDTFBT copolymers for head-to-head comparison of the 4,9-inner/5,10-outer isomeric alkylation effect. It is found that 4,9-β-aNDT adopts a twisted conjugated structure due to the intramolecular steric repulsion between the inner branched side chains and the β-hydrogens on the thiophene rings. The slightly twisted 4,9-β-aNDT moiety allows P4,9-βNDTDTFBT to have higher solubility upon polymerization and thus a higher molecular weight, which eventually induces a higher ordered packing structure in the thin film compared to P5,10-βNDTDTFBT. As a result, P4,9-βNDTDTFBT exhibits a higher OFET mobility of 0.18 cm2 V−1 s−1, and the P4,9-βNDTDTFBT:PC71BM-based solar cell device also achieves a higher PCE of 7.23%, which is even better than the corresponding P4,9-αNDTDTFBT-based device.

Graphical abstract: Synthesis and side-chain isomeric effect of 4,9-/5,10-dialkylated-β-angular-shaped naphthodithiophenes-based donor–acceptor copolymers for polymer solar cells and field-effect transistors

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 02 Feb 2017, accepted on 13 Mar 2017 and first published on 13 Mar 2017


Article type: Paper
DOI: 10.1039/C7PY00194K
Citation: Polym. Chem., 2017,8, 2334-2345
  •   Request permissions

    Synthesis and side-chain isomeric effect of 4,9-/5,10-dialkylated-β-angular-shaped naphthodithiophenes-based donor–acceptor copolymers for polymer solar cells and field-effect transistors

    D. Chiou, F. Cao, J. Hsu, C. Tsai, Y. Lai, U. Jeng, J. Zhang, H. Yan, C. Su and Y. Cheng, Polym. Chem., 2017, 8, 2334
    DOI: 10.1039/C7PY00194K

Search articles by author