Jump to main content
Jump to site search


New active leads for tuberculosis booster drugs by structure-based drug discovery

Author affiliations

Abstract

The transcriptional repressor EthR from Mycobacterium tuberculosis, a member of the TetR family of prokaryotic homo-dimeric transcription factors, controls the expression of the mycobacterial mono-oxygenase EthA. EthA is responsible for the bio-activation of the second-line tuberculosis pro-drug ethionamide, and consequently EthR inhibitors boost drug efficacy. Here, we present a comprehensive in silico structure-based screening protocol that led to the identification of a number of novel scaffolds of EthR inhibitors in subsequent biophysical screening by thermal shift assay. Growth inhibition assays demonstrated that five of the twenty biophysical hits were capable of boosting ethionamide activity in vitro, with the best novel scaffold displaying an EC50 of 34 μM. In addition, the co-crystal structures of EthR with four new ligands at resolution ranging from 2.1 to 1.4 Å confirm the binding and inactivation mode, and will enable future lead development.

Graphical abstract: New active leads for tuberculosis booster drugs by structure-based drug discovery

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Apr 2017, accepted on 01 Nov 2017 and first published on 01 Nov 2017


Article type: Paper
DOI: 10.1039/C7OB00910K
Citation: Org. Biomol. Chem., 2017, Advance Article
  •   Request permissions

    New active leads for tuberculosis booster drugs by structure-based drug discovery

    N. J. Tatum, J. W. Liebeschuetz, J. C. Cole, R. Frita, A. Herledan, A. R. Baulard, N. Willand and E. Pohl, Org. Biomol. Chem., 2017, Advance Article , DOI: 10.1039/C7OB00910K

Search articles by author

Spotlight

Advertisements