Issue 48, 2017

Floating rGO-based black membranes for solar driven sterilization

Abstract

This paper presents a new steam sterilization approach that uses a solar-driven evaporation system at the water/air interface. Compared to the conventional solar autoclave, this new steam sterilization approach via interfacial evaporation requires no complex system design to bear high steam pressure. In such a system, a reduced graphene oxide/polytetrafluoroethylene composite membrane floating at the water/air interface serves as a light-to-heat conversion medium to harvest and convert incident solar light into localized heat. Such localized heat raises the temperature of the membrane substantially and helps generate steam with a temperature higher than 120 °C. A sterilization device that takes advantage of the interfacial solar-driven evaporation system was built and its successful sterilization capability was demonstrated through both chemical and biological sterilization tests. The interfacial evaporation-based solar driven sterilization approach offers a potential low cost solution to meet the need for sterilization in undeveloped areas that lack electrical power but have ample solar radiation.

Graphical abstract: Floating rGO-based black membranes for solar driven sterilization

Supplementary files

Article information

Article type
Paper
Submitted
05 Oct 2017
Accepted
19 Nov 2017
First published
20 Nov 2017

Nanoscale, 2017,9, 19384-19389

Floating rGO-based black membranes for solar driven sterilization

Y. Zhang, D. Zhao, F. Yu, C. Yang, J. Lou, Y. Liu, Y. Chen, Z. Wang, P. Tao, W. Shang, J. Wu, C. Song and T. Deng, Nanoscale, 2017, 9, 19384 DOI: 10.1039/C7NR06861A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements