Issue 48, 2017

One dimensional building blocks for molecular separation: laminated graphitic nanoribbons

Abstract

Herein, a new carbon-based graphitic membrane composed of laminated graphitic nanoribbons with a nanometer-scale width and micrometer-scale length, the graphitic nanoribbon membrane, is reported. Compared to the existing graphitic membranes, such as those composed of graphene oxide and carbon nanotubes, the developed membrane exhibits several unique characteristics in pressure-driven systems. First, the short diffusion length through its interlayer and the free volume of its stacked nanoribbons result in high solvent flux regardless of solvent polarity (water: 25–250 L m−2 h−1 bar−1; toluene: ∼975 L m−2 h−1 bar−1; hexane: ∼240 L m−2 h−1 bar−1). The flux value for water is one order of magnitude higher, while that for nonpolar organic solvents is two to three orders of magnitude greater than the corresponding flux values obtained through commercially available nanofiltration membranes. Second, the membrane exhibits good separation performance, particularly with organic dye molecules (∼100%) and trivalent ions (∼60%), maintaining high solvent flux during extended filtration. Finally, the membrane exhibits high stability in various fluids, e.g., 1 M HCl solution, 1 M NaOH solution, toluene, ethanol, and water, as well as under hydraulic pressures of up to 50 bar. Electron microscopy observation and simulation results suggest that such distinctive features of the membrane are related to the entangled thin multilayers of the graphitic nanoribbons, which possibly originate from the high aspect ratio and narrow width of the nanoribbons.

Graphical abstract: One dimensional building blocks for molecular separation: laminated graphitic nanoribbons

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2017
Accepted
10 Nov 2017
First published
10 Nov 2017

Nanoscale, 2017,9, 19114-19123

One dimensional building blocks for molecular separation: laminated graphitic nanoribbons

D. W. Kim, I. Kim, J. Jang, Y. T. Nam, K. Park, K. O. Kwon, K. M. Cho, J. Choi, D. Kim, K. M. Kang, S. J. Kim, Y. Jung and H. Jung, Nanoscale, 2017, 9, 19114 DOI: 10.1039/C7NR05737G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements