Issue 41, 2017

Phthalocyanine-based coordination polymer nanoparticles for enhanced photodynamic therapy

Abstract

In the photodynamic therapy (PDT) of cancer, zinc phthalocyanine (ZnPc) as a photosensitizer possesses superior photosensitive properties. However, the therapeutic effect of ZnPc in PDT is limited due to its aggregation, low solubility and poor selectivity. In this study, charge-reversal phthalocyanine-based coordination polymer nanoparticles (PCPN) are developed for improving the curative effect of ZnPc. Tetra(4-carboxyphenoxy)-phthalocyaninatozinc(II) (TPZnPc) is coordinated with the zinc ion to form the core of PCPN, which is coated with a lipid bilayer by self-assembly (PCPNs@Lip). TPZnPc molecules in the core of PCPN are in the monomeric state and can generate cytotoxic singlet oxygen (1O2) efficiently, which solves the solubility and aggregation problems of ZnPc. Meanwhile, 1,2-dicarboxylic-cyclohexane anhydride modified lysyl-cholesterol (DLC) is functionalized on the surface of PCPN (PCPNs@Lip/DLC), endowing PCPN with a charge-reversal ability which could be triggered by a mildly acidic tumor microenvironment. PCPNs@Lip/DLC is proved to enhance tumor cellular uptake and generate more intracellular 1O2 after irradiation. As confirmed by in vitro and in vivo studies, PCPNs@Lip/DLC remarkably increases the PDT effect. All these results demonstrate that PCPNs@Lip/DLC is a promising nanoplatform for the application of ZnPc in effective PDT.

Graphical abstract: Phthalocyanine-based coordination polymer nanoparticles for enhanced photodynamic therapy

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2017
Accepted
17 Sep 2017
First published
18 Sep 2017

Nanoscale, 2017,9, 15883-15894

Phthalocyanine-based coordination polymer nanoparticles for enhanced photodynamic therapy

Z. Huang, L. Huang, Y. Huang, Y. He, X. Sun, X. Fu, X. Xu, G. Wei, D. Chen and C. Zhao, Nanoscale, 2017, 9, 15883 DOI: 10.1039/C7NR05402E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements