Issue 44, 2017

Foreign In3+ treatment improving the photoelectrochemical performance of a hematite nanosheet array for water splitting

Abstract

In this work, we found that foreign metallic ion (In3+) treatment enhanced the photoelectrochemical (PEC) activity of hematite nanosheets aligning on a substrate without joining the host lattice. Scanning electron microscopy (SEM) observation indicated that the In3+ ion treatment nearly did not change the size and thickness of the hematite nanosheets during solvothermal synthesis. However, the treatment reduced nanosheet stacking and increased the active surface area of the hematite photoanode. Careful combined analyses involving Energy Dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) confirmed that In3+ ions were not doped in the hematite nanosheets. Interestingly, after the In3+ treatment, the photoelectrochemical properties of the hematite nanosheets were highly enhanced when they were used as a photoanode for water splitting. The photocurrent density at 1.23 V (versus reversible hydrogen electrode) was 2.6 times as high as that of the hematite without In3+-treatment. The improved PEC activity was deduced to be associated with the increased active surface area for higher light absorption and more photoelectrode/electrolyte junctions, as well as higher carrier density after the In3+-treatment. Furthermore, the efficiencies of the surface charge separation and charge transfer for the In3+-treated hematite nanosheets also increased much more.

Graphical abstract: Foreign In3+ treatment improving the photoelectrochemical performance of a hematite nanosheet array for water splitting

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2017
Accepted
14 Oct 2017
First published
16 Oct 2017

Nanoscale, 2017,9, 17513-17523

Foreign In3+ treatment improving the photoelectrochemical performance of a hematite nanosheet array for water splitting

X. Bu, G. Wang and Y. Tian, Nanoscale, 2017, 9, 17513 DOI: 10.1039/C7NR04651K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements