Issue 36, 2017

Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation

Abstract

Oil/water separation is of great importance for the treatment of oily wastewater, including immiscible light/heavy oil–water mixtures, oil-in-water or water-in-oil emulsions. Smart surfaces with responsive wettability have received extensive attention especially for controllable oil/water separation. However, traditional smart membranes with a switchable wettability between superhydrophobicity and superhydrophilicity are limited to certain responsive materials and continuous external stimuli, such as pH, electrical field or light irradiation. Herein, a candle soot coated mesh (CSM) with a larger pore size and a candle soot coated PVDF membrane (CSP) with a smaller pore size with underwater superoleophobicity and underoil superhydrophobicity were successfully fabricated, which can be used for on-demand immiscible oil/water mixtures and surfactants-stabilized oil/water emulsion separation, respectively. Without any continuous external stimulus, the wettability of our membranes could be reversibly switched between underwater superoleophobicity and underoil superhydrophobicity simply by drying and washing alternately, thus achieving effective and switchable oil/water separation with excellent separation efficiency. We believe that such smart materials will be promising candidates for use in the removal of oil pollutants in the future.

Graphical abstract: Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2017
Accepted
19 Aug 2017
First published
21 Aug 2017

Nanoscale, 2017,9, 13610-13617

Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation

J. Li, Z. Zhao, D. Li, H. Tian, F. Zha, H. Feng and L. Guo, Nanoscale, 2017, 9, 13610 DOI: 10.1039/C7NR04448H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements