Issue 36, 2017

Probing charges on solid–liquid interfaces with the resistive-pulse technique

Abstract

Our manuscript addresses the issue of probing an effective surface charge that any surface can acquire at the solid/liquid interface. Even if a particle is predicted to be neutral based on its chemical structure, the particle can carry finite surface charges when placed in a solution. We present tools to probe the presence of surface charge densities of meso-particles, characterized with zeta potentials below 10 mV. The tools are based on the resistive-pulse technique, which uses single pores to probe properties of individual objects including molecules, particles, and cells. The presented experiments were performed with particles 280 and 400 nm in diameter and single pores with opening diameter tuned between ∼ 200 nm and one micron. Surface charge properties were probed in two modes: (i) the passage of the particles through pores of diameters larger than the particles, as well as (ii) an approach curve of a particle to a pore that is smaller than the particle diameter. The curve in the latter mode has a biphasic character starting with a low-amplitude current decrease, followed by a current enhancement reaching an amplitude of ∼10% of the baseline current. The current increase was long-lasting and stable, and shown to strongly depend on the particle surface charge density. The results are explained via voltage-modulation of ionic concentrations in the pore.

Graphical abstract: Probing charges on solid–liquid interfaces with the resistive-pulse technique

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2017
Accepted
29 Aug 2017
First published
29 Aug 2017

Nanoscale, 2017,9, 13527-13537

Probing charges on solid–liquid interfaces with the resistive-pulse technique

Y. Qiu and Z. Siwy, Nanoscale, 2017, 9, 13527 DOI: 10.1039/C7NR03998K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements