Jump to main content
Jump to site search

Mesoporous ZnO nanocapsules for the induction of enhanced antigen-specific immunological responses


The application of nanotechnology in vaccinology have fuelled rapid advancement towards design and development of nanovaccines. Nanoparticles have been found to enhance the vaccine efficacy through the spatiotemporal orchestration of antigen delivery to secondary lymphoid organs and antigen-presentation by Antigen Presenting Cells (APCs) synchronized with stimulation of innate and adaptive immune responses. Metal based nanoparticles (MNPs) have been extensively engineered for generation of nanovaccines owing to their intrinsic adjuvant- like properties and immunomodulatory functions. Furthermore, mesoporous nanocapsules of late have attracted researchers due to their precise size and exclusive capacity to encapsulate a wide range of biomolecules and their sustained release at the targeted sites. Herein, we have designed a novel mesoporous ZnO nanocapsule (mZnO) having size ~ 12nm with average pore diameter of 2.5nm, using surfactant-free sonochemical method and investigated its immunomodulatory properties by using Ova loaded mZnO nanocapsules[mZnO(Ova)] in a mice model. Our finding exemplifies that mZnO(Ova) administration steered enhanced expansion of antigen-specific T-cells and induction of IFN-γ producing effector CD4+ and CD8+ T-cells. Also, antigen-specific IgG levels were enriched in both serum and lymph nodes of mZnO(Ova) immunized mice. Further, we noticed a substantial increase in serum IgG2a or IgG2b levels and IFN-γ secretion in Ova restimulated splenocytes from mZnO(Ova) immunized mice, indicating that mZnO(Ova) skew Th1 type immune response. Overall, the uniqueness of mZnO nanocapsules in term of defined particle to pore numbers ratio (maximum of three cavities per particle), allows to load antigens efficiently. Given these features in combination with its immunomodulatory characteristics reinforces that mZnO could be used as an effective antigen-adjuvant platform for the development of novel nano-based vaccines against multiple diseases.

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 May 2017, accepted on 24 Aug 2017 and first published on 24 Aug 2017

Article type: Paper
DOI: 10.1039/C7NR03697C
Citation: Nanoscale, 2017, Accepted Manuscript
  •   Request permissions

    Mesoporous ZnO nanocapsules for the induction of enhanced antigen-specific immunological responses

    S. AFROZ, H. Medhi, S. Maity, G. Minhas, S. BATTU, J. Giddaluru, K. Kumar, P. Paik and N. Khan, Nanoscale, 2017, Accepted Manuscript , DOI: 10.1039/C7NR03697C

Search articles by author