Jump to main content
Jump to site search

Issue 24, 2017
Previous Article Next Article

Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control

Author affiliations

Abstract

Colloidal metal nanocrystals find many applications in catalysis, energy conversion devices, and therapeutics. However, the nature of ligand interactions and implications on shape control have remained uncertain at the atomic scale. Large differences in peptide adsorption strength and facet specificity were found on flat palladium surfaces versus surfaces of nanoparticles of 2 to 3 nm size using accurate atomistic simulations with the Interface force field. Folding of longer peptides across many facets explains the formation of near-spherical particles with local surface disorder, in contrast to the possibility of nanostructures of higher symmetry with shorter ligands. The average particle size in TEM correlates inversely with the surface coverage with a given ligand and with the strength of ligand adsorption. The role of specific amino acids and sequence mutations on the nanoparticle size and facet composition is discussed, as well as the origin of local surface disorder that leads to large differences in catalytic reactivity.

Graphical abstract: Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Apr 2017, accepted on 04 Jun 2017 and first published on 06 Jun 2017


Article type: Paper
DOI: 10.1039/C7NR02813J
Citation: Nanoscale, 2017,9, 8401-8409
  •   Request permissions

    Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control

    H. Ramezani-Dakhel, N. M. Bedford, T. J. Woehl, M. R. Knecht, R. R. Naik and H. Heinz, Nanoscale, 2017, 9, 8401
    DOI: 10.1039/C7NR02813J

Search articles by author

Spotlight

Advertisements