Jump to main content
Jump to site search


Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells

Author affiliations

Abstract

Severe gum disease (periodontitis), which is one of the major global oral diseases, results from microbe-host dysbiosis and dysregulated immuno-inflammatory responses. It seriously affects oral health and general wellbeing with significant socio-economic implications. It has been well documented that natural flavonoids such as baicalin (BA) and baicalein (BE) possess potent anti-inflammatory effects. However, their intrinsic poor solubility and low bioavailability severely limit their biomedical applications. In the present study, BA and BE were encapsulated in our synthesized and amine-modified mesoporous silica nanoparticles (MSNs) (Nano-BA and Nano-BE, respectively), and their loading efficiencies and releasing profiles were investigated. Their cytotoxicity was examined on primary human gingival epithelial cells (hGECs), and the cellular uptake of Nano-BA or Nano-BE was visualized via a transmission electron microscope. Their anti-inflammatory effects were evaluated in IL-1β-treated hGECs using the cytokine array and enzyme-linked immunosorbent assay. The present study shows that the amine-modified MSNs could encapsulate BA and BE, and nano-encapsulation greatly enhances the drug delivery rate and prolongs the release of BA and BE up to 216 h. Moreover, both Nano-BA and Nano-BE could be internalized by hGECs and retained intracellularly in nanoparticle-free media for at least 24 h. Note that Nano-BE pre-treatment effectively down-regulates the IL-1β-induced expression of IL-6 and IL-8 in hGECs. In conclusion, nanoparticle-encapsulated BE exhibits notable anti-inflammatory effects through effective release and cellular internalization approaches. This study may facilitate the development of novel drug delivery systems for improving oral care.

Graphical abstract: Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Apr 2017, accepted on 04 Jun 2017 and first published on 26 Jun 2017


Article type: Paper
DOI: 10.1039/C7NR02546G
Citation: Nanoscale, 2017, Advance Article
  •   Request permissions

    Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells

    X. Li, W. Luo, T. W. Ng, P. C. Leung, C. Zhang, K. C. Leung and L. Jin, Nanoscale, 2017, Advance Article , DOI: 10.1039/C7NR02546G

Search articles by author

Spotlight

Advertisements