Jump to main content
Jump to site search

Issue 18, 2017
Previous Article Next Article

Exploring the orthorhombic–tetragonal phase transition in CH3NH3PbI3: the role of atom kinetics

Author affiliations

Abstract

Methylammonium lead tri-iodide is a polymorphic material with two temperature-induced phase transitions at 165 K and 327 K, accompanied by an orthorhombic-to-tetragonal and a tetragonal-to-cubic lattice modification. Understanding the origins of these transitions as well as their implications on the crystal structure of the material is fundamental for its technological optimization. Here, we use the density functional theory along with ab initio molecular dynamics to study the low-temperature phase transition of CH3NH3PbI3. Considering two kinetically robust models for the orthorhombic and the tetragonal phase, we show that the vibrational features of the material can be strongly affected by the orientations of the methylammonium ions. We argue that the orthorhombic–tetragonal transition is characterized by a partial rearrangement of the organic cations that locally relaxes the stress induced by the thermal movement of atoms. We finally propose a macroscopic model for the tetragonal phase that consists of rotated noncentrosymmetric domains, where the methylammonium ions are quasi-two-dimensionally confined around the ab crystallographic plane.

Graphical abstract: Exploring the orthorhombic–tetragonal phase transition in CH3NH3PbI3: the role of atom kinetics

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Mar 2017, accepted on 13 Apr 2017 and first published on 13 Apr 2017


Article type: Paper
DOI: 10.1039/C7NR01818E
Citation: Nanoscale, 2017,9, 5896-5903
  •   Request permissions

    Exploring the orthorhombic–tetragonal phase transition in CH3NH3PbI3: the role of atom kinetics

    I. Deretzis and A. La Magna, Nanoscale, 2017, 9, 5896
    DOI: 10.1039/C7NR01818E

Search articles by author

Spotlight

Advertisements