Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



Highly efficient oxygen evolution from CoS2/CNTs nanocomposite via one-step electrochemical deposition and dissolution method

Abstract

The oxygen evolution reaction (OER) has been viewed as a critical step in electrochemical energy conversion and storage devices. However, searching for cheap and efficient OER electrocatalysts still remains an urgent task. Herein, we develop a new strategy involving one-step electrochemical deposition and dissolution method to fabricate hydrophilic porous CoS2/carbon nanotube (CNT) composites (CNT-CoS2). X-ray photoelectron spectroscopy and Near-edge X-ray absorption fine structure spectroscopy measurements confirm the formation of hydrophilic groups on the surface of the porous CoS2 during electrochemical oxidation. Our design holds several advantages. The electricity conductivity of CoS2 is increased by introducing CNTs as a conductive substrate. The porous nanostructures of CoS2 increase its surface area, and provide paths to promote charge and reactant transfer. The active edge sites modified with hydrophilic groups can increase the content of electrolyte–electrode contact points, increasing the intrinsic catalytic performance of CoS2. These factors allow CNT-CoS2 to achieve a low onset potential of 1.33 V vs. RHE, a stable current densities (j) of 10 mA/cm2 at an overpotential of 290 mV, and excellent stability under alkaline conditions compared with that of IrO2. The comprehensive performance of the CNT-CoS2 electrocatalyst is comparable to or better than that of any reported noble metal-free OER catalyst, even RuO2 and IrO2. This facile synthesis strategy involving synchronous electrochemical deposition and dissolution should be easily adapted for large-scale water electrolysis.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 24 Feb 2017, accepted on 17 Apr 2017 and first published on 20 Apr 2017


Article type: Paper
DOI: 10.1039/C7NR01293D
Citation: Nanoscale, 2017, Accepted Manuscript
  •   Request permissions

    Highly efficient oxygen evolution from CoS2/CNTs nanocomposite via one-step electrochemical deposition and dissolution method

    J. Yang, Z. Yang, L. Li, Q. Cai, H. Nie, M. Ge, X. Chen, Y. Chen and S. Huang, Nanoscale, 2017, Accepted Manuscript , DOI: 10.1039/C7NR01293D

Search articles by author