Issue 19, 2017

Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets

Abstract

The development of piezoelectric layered materials may be one of the key elements enabling expansion of nanotechnology, as they offer a solution for the construction of efficient transducers for a wide range of applications, including self-powered devices. Here, we investigate the piezoelectric effect in multilayer (ML) stepped MoS2 flakes obtained by liquid-phase exfoliation, which is especially interesting because it may allow the scalable fabrication of electronic devices using large area deposition techniques (e.g. solution casting, spray coating, inkjet printing). By using a conductive atomic force microscope we map the piezoelectricity of the MoS2 flakes at the nanoscale. Our experiments demonstrate the presence of electrical current densities above 100 A cm−2 when the flakes are strained in the absence of bias, and the current increases proportional to the bias. Simultaneously collected topographic and current maps demonstrate that the edges of stepped ML MoS2 flakes promote the piezoelectric effect, where the largest currents are observed. Density functional theory calculations are consistent with the ring-like piezoelectric potential generated when the flakes are strained, as well as the enhanced piezoelectric effect at edges. Our results pave the way to the design of piezoelectric devices using layered materials.

Graphical abstract: Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets

Supplementary files

Article information

Article type
Communication
Submitted
29 Nov 2016
Accepted
21 Feb 2017
First published
23 Feb 2017

Nanoscale, 2017,9, 6237-6245

Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets

X. Song, F. Hui, K. Gilmore, B. Wang, G. Jing, Z. Fan, E. Grustan-Gutierrez, Y. Shi, L. Lombardi, S. A. Hodge, A. C. Ferrari and M. Lanza, Nanoscale, 2017, 9, 6237 DOI: 10.1039/C6NR09275F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements