Jump to main content
Jump to site search


Zn-doped SnO2 nano-urchin-enriched 3D carbonaceous framework for supercapacitor application

Author affiliations

Abstract

Hierarchical Zn-doped SnO2 nano-urchins decorated on RGO nanosheets were fabricated for supercapacitor applications. In this study, SnO2 nanospheres were doped with Zn2+ to tailor their electrical and morphological properties. Zn2+ doping of the SnO2 nanospheres prevented Sn clustering and thereby reduced the particle size leading to the formation of urchin-like nanostructures. These urchins with a high surface area and short transport paths can offer high capacitive performance by assembling with RGO nanosheets. The X-ray photoelectron spectroscopy and X-ray diffraction analyses confirmed the presence of SnO2 crystal planes and successful doping of the Zn2+. The incorporation of the RGO nanosheets augmented the coulombic efficiency, specific capacitance, and cycling performance. The enhancement of the capacitive behavior resulted from the synergistic effects owing to the combined properties of pseudocapacitance and double layer capacitance. The composite electrode material offered a specific capacitance of 635 F g−1 at a current density of 1 A g−1 and has a high cycling stability up to 5000 cycles with a capacitance retention of 78.4%.

Graphical abstract: Zn-doped SnO2 nano-urchin-enriched 3D carbonaceous framework for supercapacitor application

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Oct 2017, accepted on 27 Nov 2017 and first published on 28 Nov 2017


Article type: Paper
DOI: 10.1039/C7NJ03792A
Citation: New J. Chem., 2018, Advance Article
  •   Request permissions

    Zn-doped SnO2 nano-urchin-enriched 3D carbonaceous framework for supercapacitor application

    A. D. Adhikari, R. Oraon, S. K. Tiwari, P. Saren, C. K. Maity, J. H. Lee, N. Hoon Kim and G. C. Nayak, New J. Chem., 2018, Advance Article , DOI: 10.1039/C7NJ03792A

Search articles by author

Spotlight

Advertisements