Issue 23, 2017

Controlled growth of metallic copper nanoparticles

Abstract

We present a comprehensive characterization of Cu nanoparticles (NPs) synthesized by a polyol method, combining ethylene glycol, copper chloride, polyvinylpyrrolidone, sodium citrate and ascorbic acid. This simple and low cost synthesis results in a colloid containing nearly-monodispersed metallic NPs. Our investigation enabled two important stages to be distinguished during the growth reaction: (1) the first, revealed by in situ time resolved dispersive X-ray absorption spectroscopy (XAS), corresponds to a fast reduction/nucleation and early growth of metallic NPs, later corroborated by ex situ XAS measurements. The resulting Cu nanoparticles have a mean diameter of 1.5 ± 0.8 nm, as determined by TEM; (2) the second stage, monitored by TEM, HRTEM and XRD measurements, corresponds to a slow aggregation growth where the mean volume grows linearly with time with a rate of 2.1 ± 0.3 nm3 per day – proceeding while the NPs are kept in the colloidal solution. Such slow growth rate allows the aging time to be used for tuning the NP size; nevertheless, we show that size dispersion also increases with time following a similar rate.

Graphical abstract: Controlled growth of metallic copper nanoparticles

Article information

Article type
Paper
Submitted
16 Aug 2017
Accepted
20 Oct 2017
First published
24 Oct 2017

New J. Chem., 2017,41, 14478-14485

Controlled growth of metallic copper nanoparticles

J. Boita, L. Nicolao, M. C. M. Alves and J. Morais, New J. Chem., 2017, 41, 14478 DOI: 10.1039/C7NJ03056H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements