Issue 11, 2017

Synthesis of double-shell hollow magnetic Au-loaded ellipsoids as highly active and recoverable nanoreactors

Abstract

Herein, a novel combined strategy was developed for the preparation of double-shell hollow magnetic ultra-small Au-loaded ellipsoids (Fe@MO2–Au@H–SiO2) as powerful nanoreactors; these ellipsoids comprised double mesoporous shell structures, CeO2 or TiO2 inner active yolks, plenty of sub-3 nm Au nanoparticles (NPs), and magnetic Fe cores. The hierarchical yolk–shell architectures with ellipsoidal Fe2O3@MO2 (M: Ce or Ti)/mSiO2 as yolks/shells were fabricated first via a facile bottom-up assembly process based on sol–gel reactions. After this, encapsulation of numerous extremely stable Au NPs within the shell structures was accomplished via a two-stage reduction process based on the unique deposition–precipitation method mediated with Au(en)2Cl3 compounds; moreover, strong magnetism was integrated into the ellipsoids and inner voids were formed due to the transformation of Fe2O3 into smaller magnetic Fe. Note that ethylenediamine was used as a ligand to synthesize the stable gold precursors [Au(en)2]3+ that were chemically modified onto the double ellipsoidal shells under alkaline conditions. Due to their superior structural properties and enhanced composite synergy, the Fe@MO2–Au@H–SiO2 ellipsoids, especially Fe@CeO2–Au@SiO2, were shown as a highly efficient and recoverable nanocatalysts with outstanding activity and reusability in catalyzing the reduction of 4-nitrophenol to 4-aminophenol.

Graphical abstract: Synthesis of double-shell hollow magnetic Au-loaded ellipsoids as highly active and recoverable nanoreactors

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2017
Accepted
24 Apr 2017
First published
25 Apr 2017

New J. Chem., 2017,41, 4448-4457

Synthesis of double-shell hollow magnetic Au-loaded ellipsoids as highly active and recoverable nanoreactors

J. Fang, Y. Zhang, Y. Zhou, S. Zhao, C. Zhang, M. Huang, Y. Gao and C. Yang, New J. Chem., 2017, 41, 4448 DOI: 10.1039/C7NJ00275K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements