Issue 11, 2017

Understanding the speciation of Ln(iii) complexes with octadentate tripodal ligands

Abstract

Two new dissymmetrical tripodal ligands bearing three multidentate pyridine moieties (L5 and L6) have been synthesised and the speciation of their Ln(III) complexes in solution has been studied. The complexation behaviour with selected Ln(III) has been investigated by combining ESMS, spectrophotometric and NMR titrations. For both ligands LX (X = 5, 6), the Ln2(LX)3 species are abundantly present at stoichiometry in the form of unconventional low-symmetrical complexes. However, the complexes with L5 at [Ln]/[L5] ∼1 are much better defined and allow the corresponding 1H-NMR spectrum to be completely assigned. Indeed, the latter points out that the structure of complexes [Ln2(L5)2]6+ in solution is best described as an unsaturated dinuclear helicate, where the tridentate sites are wrapped about the metallic cations, and the bidentate strand does not coordinate. Compared to L4 and L6, the prolongation of the spacer in L5 (glycine moiety) has in fact allowed thermodynamic and kinetic stabilities to increase, especially for the Lu(III) complexes. Finally, the structure of dinuclear species [Ln2(LX)2]6+ (X = 4–6) is apparently independent of the structure of the bidentate moieties, which are involved in complexation in metal excess only.

Graphical abstract: Understanding the speciation of Ln(iii) complexes with octadentate tripodal ligands

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2017
Accepted
19 Apr 2017
First published
19 Apr 2017

New J. Chem., 2017,41, 4390-4399

Understanding the speciation of Ln(III) complexes with octadentate tripodal ligands

B. E. Aroussi and J. Hamacek, New J. Chem., 2017, 41, 4390 DOI: 10.1039/C7NJ00088J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements