Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor

Author affiliations

Abstract

The micromolar equilibrium constants for heme dissociation from IsdG and IsdI reported in the literature call into question whether these enzymes are actually members of the iron-regulated surface determinant system of Staphylococcus aureus, which harvests heme iron from a host during infection. In order to address this question, the heme dissociation constants for IsdG and IsdI were reevaluated using three approaches. The heme dissociation equilibrium constants were measured using a UV/Vis absorption-detected assay analyzed with an assumption-free model, and using a newly developed fluorescence-detected assay. The heme dissociation rate constants were estimated using apomyoglobin competition assays. Analyses of the UV/Vis absorption data revealed a critical flaw in the previous measurements; heme is 99.9% protein-bound at the micromolar concentrations needed for UV/Vis absorption spectroscopy, which renders accurate equilibrium constant measurement nearly impossible. However, fluorescence can be measured for more dilute samples, and analyses of these data resulted in dissociation equilibrium constants of 1.4 ± 0.6 nM and 12.9 ± 1.3 nM for IsdG and IsdI, respectively. Analyses of the kinetic data obtained from apomyoglobin competition assays estimated heme dissociation rate constants of 0.022 ± 0.002 s−1 for IsdG and 0.092 ± 0.008 s−1 for IsdI. Based upon these data, and what is known regarding the post-translational regulation of IsdG and IsdI, it is proposed that only IsdG is a member of the heme iron acquisition pathway and IsdI regulates heme homeostasis. Furthermore, the nanomolar dissociation constants mean that heme is bound tightly by IsdG and indicates that competitive inhibition of this protein will be difficult. Instead, uncompetitive inhibition based upon a detailed understanding of enzyme mechanism is a more promising antibiotic development strategy.

Graphical abstract: Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 10 Feb 2017, accepted on 04 Apr 2017 and first published on 12 Apr 2017


Article type: Paper
DOI: 10.1039/C7MT00035A
Citation: Metallomics, 2017, Advance Article
  •   Request permissions

    Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor

    M. A. Conger, D. Pokhrel and M. D. Liptak, Metallomics, 2017, Advance Article , DOI: 10.1039/C7MT00035A

Search articles by author