Jump to main content
Jump to site search


Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design

Author affiliations

Abstract

We demonstrate an acoustic wave driven microfluidic cell sorter that combines advantages of multilayer device fabrication with planar surface acoustic wave excitation. We harness the strong vertical component of the refracted acoustic wave to enhance cell actuation by using an asymmetric flow field to increase cell deflection. Precise control of the 3-dimensional flow is realized by topographical structures implemented on the top of the microchannel. We experimentally quantify the effect of the structure dimensions and acoustic parameter. The design attains cell sorting rates and purities approaching those of state of the art fluorescence-activated cell sorters with all the advantages of microfluidic cell sorting.

Graphical abstract: Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design

Back to tab navigation

Publication details

The article was received on 09 Jul 2017, accepted on 03 Oct 2017 and first published on 03 Oct 2017


Article type: Paper
DOI: 10.1039/C7LC00715A
Citation: Lab Chip, 2017, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design

    W. L. Ung, K. Mutafopulos, P. Spink, R. W. Rambach, T. Franke and D. A. Weitz, Lab Chip, 2017, Advance Article , DOI: 10.1039/C7LC00715A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements