Jump to main content
Jump to site search


An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics

Author affiliations

Abstract

A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

Graphical abstract: An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 May 2017, accepted on 28 Jun 2017 and first published on 28 Jun 2017


Article type: Paper
DOI: 10.1039/C7LC00524E
Citation: Lab Chip, 2017, Advance Article
  •   Request permissions

    An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics

    C. Szydzik, A. F. Gavela, S. Herranz, J. Roccisano, M. Knoerzer, P. Thurgood, K. Khoshmanesh, A. Mitchell and L. M. Lechuga, Lab Chip, 2017, Advance Article , DOI: 10.1039/C7LC00524E

Search articles by author

Spotlight

Advertisements